
Table

−height:Float

−colour:String

+operation_without_signature():void

+operation_returning_jlvoid():void

+operation_returning_leg(inout leg_number:int):Leg

+shorten(inout new_height:Float):void

+paint(inout new_colour:String):void

+elaborate_signature(inout top:int,inout leg:Leg,inout nail:Nail):void

+returns_int():int

Leg

−colour:String

−length:Float

+cut(new_length:Float):void

Top

−width:Float

−length:Float

−colour:String

−thickness:Float

+cut(new_width:Float,new_length:Float):void

<< interface >>

Furniture

−weight:Float

−value:Float

−owner:String

−location:String

Nail

−material:String

−length:Float

+cut(new_length:Float):void

4table_has_legs

table_has_top

1..*

table_has_nails

CSMTable

−csmname:String

−attribute_1:int

<< realize >> table is furniture

Note that normally
an interface cannot have
attributes. Putting them
here tells Mister Model
to automagically generate
getter and setter methods.
If you do this, be careful to
realize rather then generalize
this class.

You can make a class an interface
by giving it the <<interface>> stereotype.
This is not a good idea because it will
allow you to *generalize* the interface
rather then implementing it. This will
produce weird results.

FunctionalItem

+getFunction():String

<< realize >>
Furniture is functional

DecorativeItem

+degreeOfDecoration():Float

<< realize >>
Chads Furniture is decorative

<< interface >>

HouseholdItem

−room:String

<< realize >>


